Two buses leave the bus station at 7am a Bus A returns to the station every 27 minutes, whereas bus B returns every 45 minutes. At what time will they next return at the same time?
\square

In 2015, the population of a town was 357 000. By the end of 2016, the population had increased by 12%. Find the population at the end of 2016.

Simplify $\frac{\boldsymbol{a}^{\frac{2}{5}} \times \boldsymbol{a}^{\frac{3}{4}}}{\boldsymbol{a}^{\frac{7}{20}}}$
\square

Draw the graph of 2^{x} for the values $-4 \leq x \leq 4$.

The diagram shows a circle, centre O .
The points A, B, C and D all lie on the circumference of the circle and angle BOD is 230°.
Find the size of angle $B C D$, giving reasons for every stage of your working.

The list shows the ages of 11 children. Find the interquartile range of the ages.
$9,7,11,13,10,15,13,17,12,10,8$
\square

Work out $\left(3.1 \times 10^{6}\right)-\left(2.4 \times 10^{5}\right)$,
leaving your answer in standard form.

The functions $\mathrm{f}(x)$ and $\mathrm{g}(x)$ are given by the following:
$f(x)=3 x+2$
$g(x)=2 x+1$
Find the value of $\mathrm{gf}(2)$.

Prove that the sum of three consecutive integers is always a multiple of 3.

The diagram shows a sector of a circle with radius 5 cm . Find the area of the sector, giving your answer correct to 3 significant figures.

A biased coin is flipped twice.
The probability of the coin landing on tails is 0.4 . Find the probability the coin lands on tails twice.
\square

Term 4 Maths Activities

$A B C$ is a triangle. M is the midpoint of $A C$.
$\overrightarrow{A B}=b$

$$
\overrightarrow{B C}=c
$$

Solve the simultaneous equations:
$3 x+4 y=2$
$4 x+3 y=5$

ii) Find an estimate for the mean age of the staff members.

The table shows the probabilities of picking a chocolate at random from a bag.

Fairy Milk	Sneakers	Snars Bar	Kit Kit
x	$2 x$	$6 x$	x

Form and solve an

 equation to find the probabilities of picking each of the chocolate bars.

Term 4 Maths Activities

Work out, without using a calculator:

i) $-7.5 \div 1.5$

ii) -0.3×-0.47

iii) $\left(-\frac{1}{4}\right)^{2}$

Eleanor thinks of a number, x, multiplies it by 3 and then adds 4 .
Given that her answer is 6 , form and solve an equation to find the value of x.
\square

Look at the Venn diagram. Write down the numbers that are in set:
i) $A \cap B$

ii) A^{\prime}

iii) One of the numbers is chosen at random. Find the probability the number is in set AUB.

For the given triangle, work out the length of BC, giving your answer correct
to 3 significant figures.

A piece of iron has a density of $8 \mathrm{~g} / \mathrm{cm}^{3}$ and mass of 1.7 kg .
Find the volume of the piece of iron in cm^{3}. Give your answer correct to 3 significant figures.

Factorise $2 x^{2}+9 x+10$
\square

By drawing two triangles and a rectangle, estimate the area between the curve $y=x^{2}-4$ and the x-axis.

Using the iterative formula
$x_{n+1}=\sqrt{28-x_{n}}$
with $x_{0}=4$, find the values of x_{1}, x_{2} and x_{3}.

Expand $(3 x+2)(x+4)(x-1)$
\square of whom are girls. Find the percentage of students in the school who are girls. Give your answer correct to 3 significant figures.

A piece of string measures 72.3 cm correct to 3 significant figures. Find the lower bound of the length of the piece of string.

Term 4 Maths Activities

Solve the simultaneous equations:
$x^{2}+y^{2}=10$
$y=x+4$

i) Write the expression $x^{2}+8 x-5$ in the form $(x+a)^{2}+b$ where a and b are integers.

ii) Hence write down the turning point of the graph $y=x^{2}+8 x-5$.

The table shows the ages of 40 employees. Draw a histogram to represent the data.

Age, x, years	Frequency
$16 \leq x<20$	6
$20 \leq x<26$	12
$26 \leq x<30$	7
$30 \leq x<40$	10
$40 \leq x<60$	5

Term 4 Maths Activities Answers

Two buses leave the bus station at 7am Bus A returns to the station every 27 minutes, whereas bus B returns every 45 minutes. At what time will they next return at the same time?

```
9:15am
```

In 2015, the population of a town was 357 000. By the end of 2016, the population had increased by 12%. Find the population at the end of 2016.

```
399840
```

399840

```
```

399840

```

Simplify \(\frac{\boldsymbol{a}^{\frac{2}{5}} \times \boldsymbol{a}^{\frac{3}{4}}}{\boldsymbol{a}^{\frac{7}{20}}}\)
a \(\frac{4}{5}\)

Draw the graph of \(2^{x}\) for the values \(-4 \leq x \leq 4\).

Correctly drawn exponential graph passing through \((0,1)\)


The diagram shows a circle, centre O .
The points \(A, B, C\) and \(D\) all lie on the circumference of the circle and angle BOD is \(230^{\circ}\)

Find the size of angle BCD, giving reasons for every stage of your working.

\section*{EITHER:}

The other side of BOD is 130 because angles around a point add up to \(360^{\circ}\). Then BCD is \(65^{\circ}\) because the angle at the centre is double the angle at the circumference.

OR:
Angle BAD is \(115^{\circ}\) because the angle at the centre is double the angle at the circumference. Then BCD is \(65^{\circ}\) because opposite angles in a cyclic quadrilateral add to \(180^{\circ}\).

The list shows the ages of 11 children. Find the interquartile range of the ages.
\(9,7,11,13,10,15,13,17,12,10,8\)

\section*{Term 4 Maths Activities Answers}

Work out \(\left(3.1 \times 10^{6}\right)-\left(2.4 \times 10^{5}\right)\), leaving your answer in standard form.
```

2.86 * 106

```

The functions \(\mathrm{f}(x)\) and \(\mathrm{g}(x)\) are given by the following:
\(f(x)=3 x+2\)
\(g(x)=2 x+1\)
Find the value of \(\mathrm{gf}(2)\).
17

Prove that the sum of three consecutive integers is always a multiple of 3.

Let \(n\) be any integer. Then the next two consecutive integers are \(n+1\) and \(n+2\).

The sum is \(n+n+1+n+2=3 n+3\).
This can be written as \(3(n+3)\) which is a multiple of 3 .

The diagram shows a sector of a circle with radius 5 cm . Find the area of the sector, giving your answer correct to 3 significant figures.

\[
16.4 \mathrm{~cm}^{2}
\]

\section*{A biased coin is flipped twice.}

The probability of the coin landing on tails is 0.4 . Find the probability the coin lands on tails twice.
0.16

\section*{Term 4 Maths Activities Answers}


\section*{Solve the simultaneous equations:}
\(3 x+4 y=2\)
\(4 x+3 y=5\)
\[
x=2, \quad y=-1
\]

The table shows the ages of 30 staff members.
\begin{tabular}{|c|c|}
\hline Age, \(x\), years & Frequency \\
\hline \(16 \leq x<20\) & 5 \\
\hline \(20 \leq x<24\) & 7 \\
\hline \(24 \leq x<40\) & 12 \\
\hline \(40 \leq x<60\) & 6 \\
\hline
\end{tabular}
i) Write down the modal class.
```

24\leqx<40

```
ii) Find an estimate for the mean age of the staff members.
```

30.9 (3sf)
30.9 (3sf)

```

The table shows the probabilities of picking a chocolate at random from a bag.
\begin{tabular}{|c|c|c|c|}
\hline Fairy Milk & Sneakers & Snars Bar & Kit Kit \\
\hline 0.1 & 0.2 & 0.6 & 0.1 \\
\hline
\end{tabular}

Express BM in terms of \(b\) and \(c\).
\(B M=0.5(c-b)\)

\(\square\)

Form and solve an equation to find the probabilities of picking each of the chocolate bars.
\(10 x=1\)
So \(x=0.1\)

\section*{Term 4 Maths Activities Answers}

Work out, without using a calculator:
i) \(-7.5 \div 1.5\)
\(-5\)
ii) \(-0.3 \times-0.47\)

\subsection*{0.141}
iii) \(\left(-\frac{1}{4}\right)^{2}\)
\(\frac{1}{16}\)

Eleanor thinks of a number, \(x\), multiplies it by 3 and then adds 4 .
Given that her answer is 6 , form and solve an equation to find the value of \(x\).
\[
\begin{aligned}
& 3 x+4=6 \\
& x=\frac{2}{3}
\end{aligned}
\]

Look at the Venn diagram. Write down the numbers that are in set:
i) \(A \cap B\)

3, 5, 7
ii) \(A^{\prime}\)
\[
1,4,6,8,9
\]
iii) One of the numbers is chosen at random. Find the probability the number is in set AUB.


A piece of iron has a density of \(8 \mathrm{~g} / \mathrm{cm}^{3}\) and mass of 1.7 kg .
Find the volume of the piece of iron in \(\mathrm{cm}^{3}\). Give your answer correct to 3 significant figures.

\section*{\(213 \mathrm{~cm}^{3}\)}

Factorise \(2 x^{2}+9 x+10\)
\((2 x+5)(x+2)\)

By drawing two triangles and a rectangle, estimate the area between the curve \(y=x^{2}-4\) and the \(x\)-axis.

10 units \(^{2}\) for lines drawn at -1 and 1
Other rectangles will need to be considered on a case-by-case basis.

Expand \((3 x+2)(x+4)(x-1)\)
\[
3 x^{3}+11 x^{2}-6 x-8
\]
Using the iterative formula
\(x_{n+1}=\sqrt{28-x_{n}}\)
with \(x_{0}=4\), find the values of \(x_{1}, x_{2}\) and \(x_{3}\).
\begin{tabular}{l}
\(x_{1}=4.89 \ldots\), \\
\(x_{2}=4.80 \ldots\), \\
\(x_{3}=4.81 \ldots\)
\end{tabular}

Find the nth term of the sequence:
\(3,6,11,18,27\)
\(n^{2}+2\)

There are 450 students in a school, 210 of whom are girls. Find the percentage of students in the school who are girls. Give your answer correct to 3 significant figures.
```

46.7%

```

A piece of string measures 72.3 cm correct to 3 significant figures. Find the lower bound of the length of the piece of string.

\section*{Term 4 Maths Activities Answers}

Solve the simultaneous equations:
\(x^{2}+y^{2}=10\)
\(y=x+4\)
\(x=-1, \quad y=3\)
\(x=-3, \quad y=1\)

The diagram shows a sector of a circle. Find the perimeter of the sector, giving your answer correct to 3 significant figures.

i) Write the expression \(x^{2}+8 x-5\) in the form \((x+a)^{2}+b\) where \(a\) and \(b\) are integers.
\[
(x+4)^{2}-21
\]
ii) Hence write down the turning point of the graph \(y=x^{2}+8 x-5\).
\[
(-4,-21)
\]

The table shows the ages of 40 employees. Draw a histogram to represent the data.
Histogram with following frequency densities:
\begin{tabular}{|c|c|}
\hline Age, \(x\), years & Frequency Density \\
\hline \(16 \leq x<20\) & 1.5 \\
\hline \(20 \leq x<26\) & 2 \\
\hline \(26 \leq x<30\) & 1.75 \\
\hline \(30 \leq x<40\) & 1 \\
\hline \(40 \leq x<60\) & 0.25 \\
\hline
\end{tabular}

Ben and Georgie share some sweets in the ratio 7:5. If Georgie gets 10 fewer sweets than Ben, work out how many sweets both children get.

Ben gets 35 Georgie gets 25

Simplify \(\left(3 x^{\frac{1}{8}} y^{\frac{2}{7}}\right)^{3}\)
\(27 x \frac{3}{8} y \frac{6}{7}\)```

