## Forces Foundation Revision Mat

| Circle the non-contact forces. |
| :--- |
| Underline the resistive forces. |
| friction air resistance |
| gravitational tension |
| water resistance magnetic |
| drag electrostatic upthrust |

Circle the correct units for measuring forces. 2. newtons ( N )
metres (m)
kilograms (kg)
joules (J)

| Circle the piece of equipment that is used to |
| :--- | ---: |
| measure force. |
| ammeter |
| newton meter |
| slotted masses |


1.
 the yo-yo. What is the name of that force?

The diagram shows an object on a table. 6.


Circle the correct units for measuring mass.
newtons ( N )
metres (m)
kilograms (kg)
joules (J)
Circle the correct units for measuring weight.
newtons ( N )
metres (m)
kilograms (kg)
joules (J)
Write down the equation that links gravitational field strength, mass and weight.


The diagram shows a paper aeroplane that 9 . has been thrown across the room and is travelling forwards.


Draw an arrow on the diagram to show the direction of the gravitational force on the aeroplane. Label it A.

Draw an arrow on the diagram to show the direction that air resistance acts on the aeroplane. Label it B.

| An object has a mass of 600 g . What is its |
| :--- |
| mass in kilograms $(\mathrm{kg})$ ? |

The mass of an object is 15 kg .
The gravitational field strength on Earth is $10 \mathrm{~N} / \mathrm{kg}$.
What is the object's weight on Earth?

The object is taken to Mars. Its mass does not change. Its weight on Mars is 55.5 N .

What is the gravitational field strength on Mars?
$\qquad$

$\left.\begin{array}{l}\text { Tick three boxes to show what might happen } \\ \text { to an object if the forces on it are unbalanced. } \\ \square \\ \square\end{array}\right)$
$\square$ nothange direction
$\square$ accelerate
$\square$ slow down
$\square$ explode
$\square$ cool down

Forces Foundation Revision Mat


## Forces Foundation Revision Mat Answers

| Circle the non-contact forces. |  |
| :--- | :--- |
| Underline the resistive forces. |  |
| friction $\quad$ air resistance |  |
| gravitational $\quad$ tension |  |
| water resistance $\quad$ magnetic |  |
| drag electrostatic |  |


| Circle the correct units for measuring forces. | 2. |
| :--- | ---: |
| newtons (N) <br> metres (m) <br> kilograms (kg) <br> joules ( $)$ |  |


| Circle the piece of equipment that is used to | 3. |
| :--- | ---: |
| measure force. |  |
| ammeter |  |
| newton meter |  |
| slotted masses |  |




A resistive force will also affect the movement of the yo-yo. What is the name of that force?

## air resistance

| The diagram shows an object on a table. | 6. |
| :--- | :--- |



The reaction force of the table acting on the object is 30 N . What is the weight of the object?

30N


Write down the equation that links gravitational field strength, mass and weight. weight $=$ mass $\times$ gravitational field strength

The diagram shows a paper aeroplane that 9. has been thrown across the room and is travelling forwards.


Draw an arrow on the diagram to show the direction of the gravitational force on the aeroplane. Label it A.

Draw an arrow on the diagram to show the direction that air resistance acts on the aeroplane Label it B.


The mass of an object is 15 kg .
The gravitational field strength on Earth is $10 \mathrm{~N} / \mathrm{kg}$.
What is the object's weight on Earth?
$15 \mathrm{~kg} \times 10 \mathrm{~N} / \mathrm{kg}$
150N
The object is taken to Mars. Its mass does not change. Its weight on Mars is 55.5 N .

What is the gravitational field strength on Mars? gravitational field strength $=$ weight $\div$ mass $55.5 \mathrm{~N} \div 15 \mathrm{~kg}$
3.7N/kg

| Tick three boxes to show what might happen |
| :--- |
| to an object if the forces on it are unbalanced. |
| 12. |
| $\square$ |
| change direction |

$\square$ nothing
$\square$ accelerate
$\square$
slow down
$\square$ explode
$\square$

Write down the equation that links extension, force and spring constant.
force $(\mathbf{N})=$ spring constant $(\mathbf{N} / \mathbf{m}) \times$ extension $(\mathbf{m})$
A spring has a spring constant of $20 \mathrm{~N} / \mathrm{m}$ and is extended by 0.2 m .
Calculate the force applied to the spring.
$\mathbf{2 0 \times 0 . 2}$
$\mathbf{4 N}$

Some students investigate how the extension of a spring is affected by the 17. force applied to the spring. They plot their results on the graph below.

What do the results show about the relationship between the force applied to a spring and the extension of a spring?
The relationship is...

directly proportional

$\square$nversely proportional

$\square$ inindirectly proportional

Circle the name of the law that describes this relationship.
Newton's third law

## Hooke's law

Ohm's law


